
Seattle Journal of Technology, Environmental & Innovation Law Seattle Journal of Technology, Environmental & Innovation Law

Volume 12
Issue 2 Issue 2 Article 3

5-26-2022

Metasoftware: Building Blocks for Legal Technology Metasoftware: Building Blocks for Legal Technology

Houman Shadab
New York Law School

Follow this and additional works at: https://digitalcommons.law.seattleu.edu/sjteil

 Part of the Business Organizations Law Commons, Computer Engineering Commons, Computer Law

Commons, and the Internet Law Commons

Recommended Citation Recommended Citation
Shadab, Houman (2022) "Metasoftware: Building Blocks for Legal Technology," Seattle Journal of
Technology, Environmental & Innovation Law: Vol. 12: Iss. 2, Article 3.
Available at: https://digitalcommons.law.seattleu.edu/sjteil/vol12/iss2/3

This Article is brought to you for free and open access by the Student Publications and Programs at Seattle
University School of Law Digital Commons. It has been accepted for inclusion in Seattle Journal of Technology,
Environmental & Innovation Law by an authorized editor of Seattle University School of Law Digital Commons.

https://digitalcommons.law.seattleu.edu/sjteil
https://digitalcommons.law.seattleu.edu/sjteil/vol12
https://digitalcommons.law.seattleu.edu/sjteil/vol12/iss2
https://digitalcommons.law.seattleu.edu/sjteil/vol12/iss2/3
https://digitalcommons.law.seattleu.edu/sjteil?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/900?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/837?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/837?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/892?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.law.seattleu.edu/sjteil/vol12/iss2/3?utm_source=digitalcommons.law.seattleu.edu%2Fsjteil%2Fvol12%2Fiss2%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

Metasoftware: Building Blocks for Legal Technology Metasoftware: Building Blocks for Legal Technology

Cover Page Footnote Cover Page Footnote
Professor of Law and Director, Innovation Center for Law and Technology, New York Law School. Fellow,
Stanford CodeX. B.A. 1998, University of California at Berkeley; J.D. 2002, University of Southern
California.

This article is available in Seattle Journal of Technology, Environmental & Innovation Law:
https://digitalcommons.law.seattleu.edu/sjteil/vol12/iss2/3

https://digitalcommons.law.seattleu.edu/sjteil/vol12/iss2/3

232

Metasoftware: Building Blocks for Legal Technology

Houman Shadab*

I. INTRODUCTION

Recent years have seen a vast increase in the amount and types of

software technology being employed by lawyers. The types and

applications of technology include automated document drafting, contract

workflow automation, and artificial intelligence empowered analytics and

decision making applied to a wide variety of fields such as contract review

and litigation strategy. This widespread adoption of software is due in

large part to its increasing computational power and hence value to users.

This Article argues that further waves of software adoption will

be driven not only by increasing computational power, but also by

increasing the accessibility and enabling power of software development

tools. Innovation in software is not only about computational processing

power, but also about enabling a wider range of users to create their own

powerful software without significant technical expertise. This Article is

the first to identify the recent emergence of such “metasoftware.”

Metasoftware enables users to create the software of their

choosing. It stands in sharp contrast to traditional, functional software that

is intended for a particular purpose or a defined range of tasks. Functional

software is the default type of software that is currently produced and

includes word processing, email, social networking, enterprise resource

management, online marketplaces, and video game software.

Metasoftware, by contrast, is not functional. Metasoftware presents the

user with a blank slate upon which to build functional software.

The quintessential manifestation of metasoftware is the recently

emergent phenomenon known as the “no code revolution” that frees users

from being required to manually write code to create and customize

software. These “visual software development platforms” automate the

code writing process using drag and drop, menus, flowcharts, and other

* Professor of Law and Director, Innovation Center for Law and Technology, New York Law School.

Fellow, Stanford CodeX. B.A. 1998, University of California at Berkeley; J.D. 2002, University of

Southern California.

233 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

visual elements. Visual software development platforms are metasoftware

because they present users with precisely the type of blank slate upon

which to create functional software.1

As technology continues to proliferate throughout every aspect

and role of legal practice and professional services more broadly, attorneys

will increasingly find themselves not just using technology for its existing

functional purposes, but also creating their own software and customizing

existing software using metasoftware. Pre-packaged, off-the-shelf

functional software will increasingly be too limited and expensive for

lawyers to deliver to highest quality technology-enabled legal services to

clients. Clients will demand software that is highly customized for their

particular needs and can rapidly change along with their needs.

Accordingly, lawyers will not only increasingly use technology as a tool

of practice, but they will also increasingly create and customize their own

software applications and customizations.

Section II of this Article develops a novel theory of metasoftware

as distinguished from traditional, functional software. I argue that software

is metasoftware to that extent that (1) it enables users to build user

interface elements, workflow logic, and perform database operations; (2)

provides connectivity with external data and software systems; and (3) can

be stored and run independently from the platform that is used to build the

software.

In its purest form, metasoftware enables its users to build any

functional software (given the existing state of technology); integrate with

all open software platforms; and be hosted and run in the environment of

the user’s choosing without being bound to a particular vendor or other

proprietary software platform. My identification of metasoftware

contributes to the academic literature on information systems and

technology. Metasoftware is a hitherto unrecognized category of software

for analysis in terms of several foundational lines of information

technology research including user acceptance and usage, diffusion within

an organization, and impact on organizational innovation and success

(e.g., business performance).

Section III then analyzes several existing visual software-

development platforms to determine the extent to which the platforms

qualify as metasoftware. The first category are platforms for building

functional software that are closely tied to major producers of cloud-based

software platforms such as Microsoft's Power Platform and Google’s

AppSheet. Power Platform and AppSheet enable users to build a very wide

range of functional software products but are limited in their ability to

integrate with other systems and cannot operate outside of their host

platforms. The second category are standalone proprietary “no code”

software builder platforms typified by Bubble. These standalone platforms

enable users to build an extremely broad range of functional software

applications and integrate with other systems, but generally do not enable

users to run the functional software they build with such platforms in other

environments. Platforms in the third category are closest to the ideal of

1 Code itself is not metasoftware, but rather used to create metasoftware.

2022] Metasoftware 234

metasoftware: open-source visual development platforms where the

technology that is used to build the metasoftware platform is itself

completely transparent and nonproprietary. The benefits of open-source in

this context are to enable full user control over where the functional

software they build is stored and operated. However, open-source

platforms may offer users limited ability to produce functional software

relative to proprietary platforms motivated by profit. Accordingly, Section

III identifies important tradeoffs in terms of the three metasoftware

characteristics between the three types of metasoftware platforms. These

tradeoffs in turn impact how each type of platform should be used as

building blocks for “legaltech” software, which are discussed in Section

IV.

Section IV explains how metasoftware platforms can be used to

build functional legal technology. This section focuses on four major

categories of legaltech as illustrative of the potential for metasoftware to

build functional software: legal research, legal matter management,

contract automation, and a variety of applications of artificial intelligence.

As recently argued in the article Augmented Lawyering, which was

presented at the Yale Law School Center for the Study of Corporate Law,

AI “will augment the capabilities of human lawyers who use AI-enabled

services as inputs to their work and generate new roles for legal experts in

producing these AI-enabled services.”2 This Article accordingly also

contributes to the literature on how technology is transforming legal

practice to argue for how such technology-enabled legal services can and

should be created by lawyers and other legal professionals.

Section V concludes by way of summary and recommendations

regarding what type of metasoftware is best suited for building certain

functional legaltech applications.

II. A THEORY OF METASOFTWARE

Metasoftware enables users to create the software of their

choosing and stands in sharp contrast to traditional, functional software

that is intended for a particular purpose or a defined range of tasks.

Functional software is the default software that is currently produced and

includes word processing, email, social networking, enterprise resource

management, online marketplaces, and video game software.

Metasoftware, by contrast, is not functional. Metasoftware presents the

user with a blank slate upon which to build functional software.

In its purest form, metasoftware enables its users to build any

functional software (given the existing state of technology), integrate with

all open software platforms, and be hosted and run in the environment of

the user’s choosing without being bound to a particular vendor or other

proprietary software platform.

This Section details the characteristics of metasoftware and

discusses how the emergence of metasoftware has important implications

for information technology research.

2 John Armour, Parnham Richard, and Mari Sako, Augmented Lawyering (European Corporate

Governance Institute, Law Working Paper No. 558, 2020).

235 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

A. Metasoftware and Code

1. Structure of Metasoftware

Software should be viewed as metasoftware to the extent that it

has enabling, connectivity, and platform independence characteristics. The

enabling aspect of metasoftware means that it provides users with

substantive ability to build user interface elements, workflow logic that

executes computer programming tasks, and engage in database storage

operations.3 The connectivity aspect of metasoftware exists to the extent

that the software integrates with external data and software systems.

Finally, the platform independence aspect of metasoftware exists to the

extent that functional software and its associated data and code is able to

be stored and run (i.e., processed) independently of the metasoftware

platform that is used to build the software.

The enabling, connectivity, and independence characteristics of

metasoftware are illustrated in Figure 1.

Figure 1: Metasoftware Characteristics and Structure

The conceptual and functional dividing lines between these

characteristics are not always easy to distinguish. For example, the ability

of a metasoftware platform to connect to an external database effectively

enables that data to become part of (or internal to) the data that is used by

the functional software being built on its platform. In this sense,

connectivity enables data storage and operations. Similarly, platform

independence may also enable the processing of unique workflows (such

as those enabled with blockchain technology) that are only capable of

3 See Ariel Ortiz Ramirez, Three-Tier Architecture, LINUX JOURNAL (July 1, 2000),
https://www.linuxjournal.com/article/3508 [https://perma.cc/9ES6-XLPW] (this is consistent with the

widely used three-tier software architecture.)

2022] Metasoftware 236

being executed on platforms that are distinct from the metasoftware

platform. In this sense, platform independence enables substantive

workflows.

2. Visual Software Development and the Role of Code

Generally, a “software program” is a set of rules or step-by-step

instructions executed by a computer to perform a task. These tasks produce

an output or have some kind of action in response to processing an input.4

Given that computer hardware can only “understand” binary logic

expressed in the form of 1s and 0s, all programming rules must ultimately

be processed in the form of machine code, “a computer programming

language consisting of binary or hexadecimal instructions which a

computer can respond to directly.”5 Because of the inherent difficulty in

programming a computer with machine code, numerous programming

languages and paradigms have been developed that abstract away from 1s

and 0s in order to make programming with code more accessible. When

processed, however, all higher-level computer languages must ultimately

compile or otherwise translate down to machine code to be executed. As

explained by Michael Schmidt,

Machine language is the language understood by a

computer. It is very difficult to understand, but it is the

only thing that the computer can work with. All programs

and programming languages eventually generate or run

programs in machine language.6

Different programming languages differ in many ways, including

with respect to their level of abstraction from machine code, their

particular syntax, and how they conceptualize various rules and

operations. These rules and operations include mathematical calculations,

defining variables, structuring data, undertaking repetitive procedures

(e.g., algorithms), and the order in which computational tasks should take

place.7 Unsurprisingly, different languages are better suited for certain

4 See e.g., ASHOK ARORA, COMPUTER FUNDAMENTALS AND APPLICATIONS 74 (Vikas Publishing
House ed. 2015). (this does not mean that computational tasks are inherently deterministic such that

the same input(s) will always produce the same output in a given program. Programming languages

can be ambiguous). See James Grimmlemann, All Smart Contracts Are Ambiguous 2, LAW JOURNAL

OF INNOVATION 1, 11-14 (2019). (a set of programming instructions that perform a specific task is a

procedure).
5 Machine Code, ENCYCLOPEDIA.COM (May 23, 2018), https://www.encyclopedia.com/science-and-
technology/computers-and-electrical-engineering/computers-and-computing/machine-

code#:~:text=ma%C2%B7chine%20code%20(also%20machine,computer%20can%20respond%20to

%20directly [https://perma.cc/ME7Y-W8JA].
6Machine Language, SCIENCE DIRECT, https://www.sciencedirect.com/topics/engineering/machine-

language [https://perma.cc/EUX7-3Q3C] (last visited March 22, 2022, 12:00 pm), citing MICHAEL L.

SCHMIT, PENTIUM™ PROCESSOR (1st ed. 1994).
7 HAROLD ABELSON ET AL., STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS 6-15 (2nd

ed. 1996).

237 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

tasks, such as JavaScript for web applications and Python for machine

learning.8

A recent development has been the proliferation of powerful,

customizable, visual programming platforms that do not require a

programmer to write any code. Visual programming tools operate at the

highest level of abstraction above traditional code-based programming

languages. Typically, a visual programming platform auto-generates

traditional code in response to users establishing aspects of a software such

as workflow logic and database interactions. This process is described by

the no code platform Ycode:

While you drag and drop elements into the canvas and style

them to perfection, Ycode silently writes clean code based

on preferred open-source frameworks like Laravel and

TailwindCSS.9

A very simple example of visual software development compared

to traditional code-based development is shown in Figure 2 using the

Google Blockly platform. The visual programming component for

displaying “Hello World!” until the “OK” button is pressed three times is

displayed next to its equivalent in the JavaScript programming.10

Figure 2: Visual Programing Versus Code Programming

Visual Programming JavaScript Code

 var Count;

 Count = 1;

 while (Count <= 3) {

 window.alert('Hello World!');

 Count = Count + 1;

 }

With visual development, users do not need to be concerned with

the syntax of any particular programming languages. Visual software

components are both symbolic and functional, and therefore promote

linguistic meaning with action-functionality. As noted by the no code

platform Unqork, “[b]y fully abstracting code into a completely visual

interface, users can rely on [graphical] components to build

8 See JOHN M. ZELLE, PYTHON PROGRAMMING: AN INTRODUCTION TO COMPUTER SCIENCE 8 (2004).

(different languages may fall within broader programming paradigms such as object-oriented

programming or functional programming. Ultimately, all human-readable programming languages
must be converted (“compiled”) into binary notation so that its rules and data can be processed by the

computer's circuits (which can only process 0s and 1s)).
9 YCODE, https://www.ycode.com [https://perma.cc/M72R-RYRZ] (last visited March 12, 2022).
10 TRY BLOCKLY, https://developers.google.com/blockly [https://perma.cc/V2MS-7B83] (last visited

March 12, 2022).

2022] Metasoftware 238

applications . . . No-code allows us to work in natural human languages.”11

With visual development, “ideas are immediately turned into [software

applications] that work the way they should intuitively, allowing users to

focus on ideas over the syntax.”12 This tight coupling between meaning

and software interface enables the blank slate feature of metasoftware to

emerge; users can build in a truly outcome-oriented fashion focused solely

on function and not non-functional aspects of software code.

In the context of databases, visual software development enables

the use of Entity Relationship Diagrams (ERD) and other visual database

tools that permit data processing “in ways that are intuitive to the human

brain . . . ”13 An ERD defines entities and their attributes, and shows the

relationships between them to illustrate the logical structure of databases.14

An example ERD for a database that organizes data about students and

classes is shown in Figure 3.15

Figure 3: Entity Relationship Diagram Example

The following figure shows the relationship between the highest

level of abstraction visual software development platforms and the lowest-

level machine code, including the various standard types of programming

languages in between based on the abstraction layer.

11 Welcome to the Era of No-Code in the Enterprise, UNCORK RESOURCE CENTER,
https://www.unqork.com/resources/articles/welcome-to-the-era-of-no-code-in-the-enterprise

[https://perma.cc/9ZAK-U644]. See also, Explaining No Code to Engineers, Uncork Resource Center,

(“No-code’s visual workflows create a common language that both business users and engineers can
speak.”), https://www.unqork.com/resources/blog-articles/explaining-no-code-to-engineers

[https://perma.cc/5Z4F-JQY7].
12 Humanizing Development with No-Code, UNCORK RESOURCE CENTER,
https://www.unqork.com/resources/blog-articles/humanizing-development-with-no-code

[https://perma.cc/3SVL-7MTE].
13 Id.
14 SmartDraw, ENTITY RELATIONSHIP DIAGRAM, https://www.smartdraw.com/entity-relationship-

diagram [https://perma.cc/QPN4-EGGP].
15 The Database: Database Relationships, XANO, https://docs.xano.com/database/database-
relationships [https://perma.cc/GB2T-3DWY].

239 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 4: Programming Language Abstraction Hierarchy

Programming language abstraction has two important

implications for metasoftware.

First, metasoftware must use visual software development as a

primary tool of development. This is because visual software tools are

required for metasoftware to have the emergent property of being a blank

slate upon which to build functional software. Although functional

software is traditionally built by writing code and without visual

development tools, any particular environment for creating functional

software by writing code is too restrictive in what it enables compared to

a visual development platform.16

Second, the hierarchy of programming languages is also important

in understanding the platform independence characteristic of

metasoftware. The independence of metasoftware rests upon the ability of

the functional software that is created on the metasoftware platform to be

able to run on external platforms. Running on external platforms means

that the code underlying the functional software is able to be compiled to

and run on other platforms. Platform independence is also supported by

the ability of the visual development tools of a particular metasoftware

platform to be replicated and run on other metasoftware platforms distinct

from the actual functional software that they are used to create.

16 This is because coding platform environments at most focus on one specific component of software,

such as UI or a subject or workflow logic. In doing so, they cannot be conceptualized as a single
platform entity that can be used to make software. Several strands of code must be combined together

in order to create functional software whereas only one visual development platform is required.

Indeed, code by itself is not software, but rather what is required to make functional software.
Because visual development is at such a high level of abstraction, it crosses over numerous

subdomains of code to produce functional software.

2022] Metasoftware 240

B. Characteristics of Metasoftware

1. Enabling Components

a. User Interface Elements

A software application’s user interface is the visual means by

which users view and interact with an application's data and programmable

logic. UI elements include all of the textual and graphical elements that

are able to communicate scholarship:

● text fields,

● buttons that initiate actions such as navigating the user to

another page, or saving input data in a database,

● input fields,

● icon, images, video, other graphical, and design elements,

● elements that group or otherwise organize other elements,

● navigation elements such as sliders,

● standardized elements for uploading files and inputting

date/time,

● graphs, charts, timelines, and other data-oriented elements.

UI elements have properties. These properties include

characteristics such as size, page position, color, and how they may behave

when certain conditions are true or in response to user actions. User

interaction with UI elements, such as by clicking on them or entering text

into a box can also initiate programming tasks. These actions are governed

by the logic programmed into the application and may or may not interact

with the application’s database. UI elements may also have data attached

to them (known as a “state”) that does not reside in any database.

Data visualization tools are types of UI elements that provide

users with coherent and meaningful presentations of large volumes of data

and complex findings to show trends, relationships, and highlight

significance. As shown in Figure 5, these data visualization tools include

a wide variety of visual formats for data ranging from standard pie charts

and scatter plots diagrams to bubble charts and network diagrams.17

17See Severino Ribecca, THE DATA VISUALIZATION CATALOGUE, https://datavizcatalogue.com

[https://perma.cc/ARL7-8CSX]. See also Digital Humanities: Visualizations, NEW YORK

UNIVERSITY, https://guides.nyu.edu/digital-humanities/tools-and-software/visualization
[https://perma.cc/5M2F-7LP7].

https://guides.nyu.edu/digital-humanities/tools-and-software/visualization

241 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 5: Types of Data Visualization

b. Workflow Logic

The heart of any software application is its programmable logic

that enables the application to undertake tasks. Programmability creates

interactivity between a user and a software application because the

application is instructed to undertake a task in response to user inputs or

changes in external data.

A programmed sequence of events that begins with a triggering

event that causes a software output is a workflow. Programmable

workflows implement the logical operators and other fundamental

computer science concepts. Triggering events include (1) user interface

triggers (e.g., pressing a button, entering text in a text box element, a

change in another element) and (2) changes to or evaluations about data in

an internal or external database (e.g., two days have elapsed since an email

was sent. A new document was uploaded to a database). Actions that take

place in response to triggers include (1) changes being made to a user

interface element (e.g., new text based is displayed, color changes to a

graphic, the appearance of an image); (2) changes being made to internal

or external data; and (3) the performance of an operation such as

performing an operation on data. A second type of workflow structure is

maintaining a property or (continuing to) performing an action while or so

long as a condition remains true. For example, users may not be permitted

to access certain data so long as they have not passed a security test.

Rules that govern workflows can also be made subject to

exceptions so that the workflow only operates (or does not operate) when

certain triggers take place or conditions are true. Workflows also enable

significant automation when multiple actions take place in response to a

fewer number of triggers. Ultimately, an application’s underlying

programming logic governs the connection between a trigger and resulting

action.

2022] Metasoftware 242

c. Database Operations

Creating functional software involves organizing information

relating to the subject of the work in a digital format—as data. This is

because software operations that involve the use of information

necessarily involve the storage, processing, and display of data. Not

surprisingly, “computer scientists have developed a large body of concepts

and techniques for managing data.”18 Accordingly, a foundational aspect

of software development is properly establishing how data is structured,

stored, processed, and displayed by a software application. Modern

databases facilitate everyday activities such as online transaction

processing and data analytics.19 A primary purpose of a database system

is to provide users with an abstract view of data and hide details about how

data is stored and maintained.20 Database systems are used to manage

collections of data that are relatively large, valuable, and able to be

accessed by multiple users or applications.21

In building functional software, metasoftware users will most

likely use relational databases when storing data within an application and

nonrelational (or semi-structured) databases when accessing data available

on external websites or platforms. A relational data model organizes data

into tables and is characterized by spreadsheets.22 In a relational model,

the same type of data must have the same attribute. For example, all rows

have the same columns. By contrast, in a semi-structured data model,

“individual data items of the same type may have different sets of

attributes.”23 Semi-structured data is more flexible than relational data,

enables the organization of a wide variety of data types, and facilitates

online data transmission because it is a standard data format for

transmitting data over the Internet. The data object shown in Figure 6

shows an example of semi-structured data in the popular online data

format known as JavaScript Object Notation:24

18ABRAHAM SILBERSCHATZ ET AL., DATABASE SYSTEM CONCEPTS 1 (7th ed., 2020).
19 Id at 4 (“the processing of data to draw conclusions, and infer rules or decision procedures, which
are then used to drive business decisions”).
20Id at 29 ("A major purpose of a database system is to provide users with an abstract view of the data.

That is, the system hides certain details of how the data are stored and maintained").
21 Id at 2.
22 Id at 8.
23Id; See also Hastie, Chris, Zero to Snowflake: An Introduction to Semi-Structured JSON Data
Formats, INTERWORKS (Jan. 21, 2020), https://interworks.com/blog/chastie/2020/01/21/zero-to-

snowflake-an-introduction-to-semi-structured-json-data-formats/ [https://perma.cc/C5VJ-KDBQ].
24 How to Fetch and Display JSON Data in HTML Using JavaScript, HOW TO CREATE APPS (Mar. 22,
2022), https://howtocreateapps.com/fetch-and-display-json-html-javascript/ [https://perma.cc/A24G-

SW6U].

243 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 6: Example of Semi-Structured Data

The most common database operations enable users to:

● retrieve information stored in a database.

● insert new information into a database.

● delete information from a database.

● modify information stored in a database.25

An important consideration is what level of access different types

of users have to a database, or what functionality they are permitted to

perform based on role or pricing.26

Data is a foundational aspect of functioning software. By

interacting with UI elements, users can view, add, edit, delete, and have

calculations performed on an application’s data. In addition, workflows

can process, change, or otherwise involve data within an application’s

database. By using an API to connect to data that resides outside of an

application, users can likewise create workflows that interact with data that

is external to the application’s database. Connecting to external APIs also

enables functionality from third party applications to be integrated into an

application’s workflows, such as Google Maps, payments, and search

functionality.

To create a database, one must first create a conceptual schema of

how real-world objects or information should be categorized, relate to one

another, and be described with data-oriented properties. Data

categorization involves determining the appropriate level of abstraction to

create a database. Data relation involves determining how to connect two

or more databases together due to sharing common data points, if at all.

Data description involves how to identify the properties of data objects

with particular data points. This often entails deciding what column

headings should be used in a standard database.

In creating an application about Shakespeare’s work, for example,

the design of the database will revolve around decisions about how to

25 Silberschatz et al., Supra note 19, at 8. (these four operations parallel what is commonly known as
CRUD database operations: “create, read, update and delete.”) See also Id. at 419.
26 Silberschatz, supra note 19, at 24-25.

2022] Metasoftware 244

categorize his work (e.g., by type or by theme), how his work may relate

to each other so that common properties can be identified (e.g., an

archetypal character that appears in many of his works), and how to

describe any particular work with properties such as length, character

motivations, and date published.

2. Connectivity

As a blank slate upon which to create functional software, an

important aspect of metasoftware is its ability to connect to external

databases and other software systems. Generally, modern software has

high degrees of connectivity due to the open data movement and the

application programming interface (API) revolution. Open data and API-

enabled automation workflows enable users to connect and integrate an

extremely wide array of external platforms, software-driven functionality

and services, and real-time data sources.

The open data movement refers to the increasingly widespread

availability of constantly updated, high-quality data about nearly every

aspect of human society, especially from governmental and academic

communities. The accessibility of public data was greatly enhanced in

January 2020 when Google’s Public Dataset search became publicly

available, making millions of data sets searchable.27 In parallel to the

increasing availability of public data is the increasing accessibility of tools

that enable users to employ the methods of data science, data visualization,

and machine learning without code or formal training in statistics.28 These

tools can be used alongside or directly integrated within the user interface

of visual application development platforms.29

Machine learning and data science tools enable analysis of large

data sets to find patterns and estimate on future outcomes based on data

that reveals prior associations. For example, according to the no code data

science tool Obviously AI,

27 Natasha Noy, Discovering Millions of Datasets on the Web, (Jan. 23, 2020),
https://www.blog.google/products/search/discovering-millions-datasets-web/ [https://perma.cc/7EAP-

TW3V].
28 See, e.g., Jack Riewe, How No-Code Machine Learning Algorithms Work, OBVIOUSLY AI, INC.

(May 14, 2020), https://www.obviously.ai/post/how-no-code-machine-learning-algorithms-work

[https://perma.cc/B4AV-DPNY]; Enrich Your Stories with Charts, Maps, and Tables,

DATAWRAPPER, https://www.datawrapper.de/why-datawrapper/ [https://perma.cc/HBS4-8Z8Y] (last
visited Mar. 23, 2022); About Ludwig, LUDWIG, https://ludwig-ai.github.io/ludwig-docs/

[https://perma.cc/BW4S-7N67] (last visited Mar. 23, 2022) (“Ludwig is a toolbox that allows to train

and test deep learning models without the need to write code.”); About Lobe, LOBE,
https://lobe.ai/about [https://perma.cc/V3VX-ESB8] (last visited Mar. 23, 2022); The Wolfram

Approach to Machine Learning, WOLFRAM, https://www.wolfram.com/featureset/machine-learning/

[https://perma.cc/W9SL-KL3E] (last visited Mar. 23, 2022) (“making state-of-the-art machine
learning in a full range of applications accessible even to non-experts.”); RAWGraphs, RAWGraphs –

Introduction, YouTube (Feb. 22, 2017), https://www.youtube.com/watch?v=2TtYlty-M5g

[https://perma.cc/J2GQ-AAEM] (“RAWGraphs is an open source data visualization tool built with the
goal of making visualization of complex data easy for everyone.”); AutoML, GOOGLE CLOUD

https://cloud.google.com/automl/ [https://perma.cc/VKR5-X7RH] (last visited Mar. 23, 2022). See

also generally Rohit Chatterjee, Top Ten Tools for No-Code AI & ML, ANALYTICS INDIA MAGAZINE
(Feb. 11. 2020), https://analyticsindiamag.com/top-10-tools-for-no-code-ai-ml/

[https://perma.cc/D39E-K3DS].
29 See, e.g., Allen Yang, No-Code Deep Learning with Bubble & Peltarion, BUBBLE GROUP, INC. (Jul.
16, 2020), https://bubble.io/blog/bubble-peltarion-machine-learning-ai/ [https://perma.cc/TV3U-

YVTJ].

245 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

a large insurer developed a report for predicting the

likelihood that a workers’ compensation claim would lead

to litigation. Claims with probability of litigation were

referred to senior staff for early and attractive settlement

offers. This saved the company 8% of the litigations they

would face otherwise and $3 million annually.30

The API revolution consists of the increasingly widespread

practice of software and data being made available to be easily integrated

inside (or connected to) with other applications without having to rebuild

any of the functionality of the external software. A prominent example is

Google making Google Maps available via API so that websites and other

apps can use Google Maps in a way that is relevant to their business or

other purpose without having to build their own global GPS-based map

application. The Programmable Web directory lists of over 22,000 public

APIs.31

Supporting the connection of software applications via API are

visual connector platforms such as Zapier and Integromat. The benefit of

connector apps is offering pre-made interconnections (often called

“recipes”) between different software systems. These pre-made

connectors remove the need to read an application’s API documentation

to incorporate the functionality of an external data set or software system

within another application. No code platforms also offer plug-ins that often

make adding other applications’ functionality even easier than using a

connector platform. Connector tools like Zapier and other API-enabled

automation workflows significantly enhance the connectivity of modern

software to an extremely wide and ever-growing array of platforms and

data sources.

3. Platform Independence

Software platform independence is a characteristic of software

that is present to the extent the software (and any related programming

language, data, or another digital phenomenon) is able to be stored and

operated with any database type, operating system, or other computing

environments.32 Software that is able to run on several systems or

platforms is known as cross-platform software.33

Platform independence is supported to the extent that the

underlying code metasoftware is open source. Code is the open-source

when the code is publicly available and available for third parties to view,

30 Harish, Insurance, SCOOPML (Jun. 1, 2020), https://www.scoopml.app/post

[https://perma.cc/NC8E-BHGB].
31 ProgrammableWeb Research Center, PROGRAMMABLEWEB,

https://www.programmableweb.com/api-research [https://perma.cc/DX5Z-3WHC] (last visited Mar.

23, 2022).
32 See Platform-Independent, GARTNER, https://www.gartner.com/en/information-

technology/glossary/platform-independent [https://perma.cc/LQJ7-MZ3B] (last visited Mar. 23,

2022).
33 Cross-Platform Software, WIKIPEDIA, https://en.wikipedia.org/wiki/Cross-platform_software

[https://perma.cc/6BXP-M439] (last visited Mar. 23, 2022).

2022] Metasoftware 246

edit, and use in their projects.34 Open-source software supports platform

independence because open-source software can be exported to systems

outside of a proprietary platform or system. Proprietary software can also

be exportable to external systems; in such a case the software underlying

the platform will not qualify as open source but the code underlying the

functional software application that a user builds with the metasoftware

will be fully owned and editable. A benefit of the metasoftware platform

itself being open source is that it may facilitate platform independence by

making it easier for user to implement the code they export on alternative

systems. This is because the user may be able to view and use their version

of the metasoftware’s code that interacts with the code associated with the

functional software application.

Platform independence is supported on the deepest level of the

infrastructure that runs software by decentralized computer architectures.

Traditional infrastructures for running software and storing user data rely

on centralized computing systems that are either owned by corporate users

for their own purpose (such as a bank’s own computer servers running the

bank’s software on its premises) or available over the internet via “cloud”

networks that are operated by companies such as Amazon Web Services,

Microsoft Azure, and Google Cloud. By contrast, decentralized computing

systems are not operated by any specific entity. Decentralized computing

operates through computing networks that operate according to protocol

rules that prevent any entity from controlling the network operations or

accessing user data by default. Decentralized computing supports platform

independence because it gives users of metasoftware much more control

over where and how the software they create operates, including

independence from rules established by centralized computing systems.

Decentralized computing is often referred to as Web3. It includes

decentralized blockchain networks that keep data private, and transactions

secure via cryptography and incentivize parties to provide computational

power by earning cryptocurrency.35 How particular Web3 projects further

the characteristic of platform independence are discussed below.

C. Metasoftware and Information Systems

The emergence of metasoftware has several significant

implications for the discipline of Information Systems (or Information

Technology). Metasoftware is most relevant for the following categories

of IS research: user acceptance and use of IT, the impact of IT on

organizations, IS success, IT and business performance, adoption, and IT

implementation. According to Heikki Topi, IT research attempts to answer

foundational questions such as:

● Why do users choose to accept some technologies readily

and others not at all?

34 What is Open Source?, OPENSOURCE.COM, https://opensource.com/resources/what-open-source

[https://perma.cc/5YB6-55NQ] (last visited Mar. 23, 2022).
35 See generally Emre Tekisalp, Understanding Web 3 — A User Controlled Internet, COINBASE
(Aug. 29, 2018), https://blog.coinbase.com/understanding-web-3-a-user-controlled-internet-

a39c21cf83f3 [https://perma.cc/43DM-CLQD].

247 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

● What are the mechanisms through which IT affects

organizations and can be used to transform them?

● How do we define and measure the success of IS in

organizations?

● Do IT-based solutions really have a measurable impact on

business performance?36

The largest area of research in IT is user acceptance and use of IT.

The key proposition of this research is that “the probability of a user’s

behavioral intention to use a specific IT is based on two primary factors:

perceived usefulness and perceived ease of use, the former directly and the

latter both directly and mediated by perceived usefulness.”37 The more

specific area of adoption and diffusion research focuses on attributes of IT

that affect its adoption such as those identified by Everett M. Rogers:

relative advantage, compatibility, complexity, observability, and

trialability.38 Metasoftware is relevant to the literature on IT user

acceptance and usage.

Metasoftware is orders of magnitude more accessible than

traditional IT systems due to metasoftware not requiring any expertise in

coding or broader IT systems to be effectively used. This means that non-

technical employees within an organization can use metasoftware to

perform operations and undertake activities that would otherwise require

IT professionals. These operations and activities include a wide variety of

digital transformation tasks such as digitizing and creating a searchable

repository for paper-based documents, automation of business processes

such as communications and approvals and applying artificial intelligence

and data analytics to decision-making. Metasoftware also scores very

highly in all of the Rogers’ diffusion factors:

1. metasoftware is widely regarded as superior to traditional

functional software (at least for a wide range of purposes);

2. metasoftware builds upon existing software frameworks

and is compatible with them (e.g., custom code can be

added to most metasoftware platforms);

3. metasoftware is less complex than coding-based systems;

4. metasoftware is highly triable because users can in just a

few hours onboard to a system and begin to use it; and

5. metasoftware is highly visible to third parties because of

the front end, user interface elements, and results that can

be created with it.

IT research also focuses on the impact of IT on organizations

(including its impact on innovation, emergent practices, and organization

structure and change); its success (as measured by factors such as “system

quality, information quality, use, user satisfaction, individual impact, and

36 Heikki Topi, Evolving Discipline of Information Systems in Computing Handbook, Vol. 2:

Information Systems and Information Technology 1, 12 (Heikki Topi & Allen Tucker eds., 3d ed.

2014).
37 Id at 3.
38 EVERETT M. ROGERS, DIFFUSION OF INNOVATIONS 15-17 (5th ed. 2003).

2022] Metasoftware 248

organizational impact”); and how IT improves business performance (with

studies viewing IT as a competitive advantage and contributing positively

towards firm output and innovation).39 In each of these areas,

metasoftware presents a fundamental shift and contribution: it will help

organizations much more rapidly innovate, it will improve IT success due

to its wide-ranging accessibility, and it will improve business performance

by dramatically lowering the costs of IT spending and vastly increasing

the speed of IT.

III. SOFTWARE PLATFORMS AND INFRASTRUCTURE AS

METASOFTWARE

This Section examines several existing software platforms and

broader pieces of software infrastructure as examples of metasoftware or

supporting infrastructure having the characteristics of enabling

components, connectivity, and platform independence. These software

platforms and infrastructure are:

● visual development platforms created by the largest

technology companies in the world (“big tech”),

● standalone proprietary visual development software

providers,

● standalone open-source visual development software

providers, and

● emerging decentralized software infrastructure.

While none of the foregoing qualifies as pure metasoftware or

infrastructure in the sense of possessing or enabling all of the

characteristics of metasoftware as outlined in Section II, each possesses

most of the characteristics to a sufficient degree to be classified as

metasoftware. However, each of the foregoing possesses important

tradeoffs relative to metasoftware characteristics. These tradeoffs for the

platforms are summarized in the following Table:

39 Heikki Topi, Computing Handbook: Vol. 2: Information Systems and Information Technology 1-6

(3rd ed. 2014).

249 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Table 1: Metasoftware Characteristic Tradeoffs Among Different

Platforms

Importantly, these tradeoffs have important implications for building

legaltech applications, which is examined Section IV.

A. Cloud Provider Visual Development Platforms

The two leading examples of metasoftware created by major

technology companies that specialize in providing broad access cloud-

based software are Miscrosoft’s Power Platform and Google’s AppSheet.

Amazon’s Honeycode platform qualifies as Big Tech metasoftware, but

its functionality is limited compared with Power Platform and AppSheet.

1. Microsoft Power Platform

Power Platform was initially released in 2018 and consists of an

interconnected suite of functional software building tools that, when

combined, constitute metasoftware. This is because Power Platform

enables the creation of an extremely wide range of functional software.

The primary components of the Power Platform are:

● Power Apps: a visual software development tool that

enables users to create apps with standard UI elements,

formula-driven logic, and connections to a wide variety of

data sources. An indicative screenshot of the Power Apps

interface is shown in Figure 7

Cloud

Provider

Platforms

Standalone

Proprietary

Platforms

Open Source

Platforms

Enabling

Components

High High Medium to

Low

Connectivity

High,

especially for

proprietary

components

High,

especially for

wide ranging

plugins

Low

Platform

Independence

Low Low High

2022] Metasoftware 250

Figure 7: Power Apps Interface

The nine main components are

● Power Automate: a visual workflow automation tool. An

indicative screenshot of the Power Automate interface that

automates the process of saving email attachments to an

online drive is shown in Figure 8.

Figure 8: Power Apps Interface

● Power BI: a data visualization and analytics tool. An

indicative screenshot of the Power BI interface is shown in

Figure 9

251 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

 Figure 9: Power BI Interface

2. Google’s AppSheet

AppSheet was founded in 2014 and acquired by Google in January

2020.40 AppSheet is not comprised of distinct products as is Power

Platform, but it essentially combines the UI, workflow automation builder,

and data connectivity into a single interface. Figure 10 shows the

application editor with the UI menu.41

Figure 10: AppSheet

Figure 11 shows the same application editor but with a menu that

enables a user to create programmable workflows.42

40 AppSheet, WIKIPEDIA, https://en.wikipedia.org/wiki/AppSheet [https://perma.cc/HZU3-F25B] (last

visited Mar. 22, 2022).
41 How to Create an App, APPSHEET, http://solutions.appsheet.com/how-to-create-an-app
[https://perma.cc/4GVP-VT68] (last visited Mar. 22, 2022).
42 Id.

2022] Metasoftware 252

Figure 11: AppSheet Workflow Editor

Like the Power Platform, apps built with AppSheet can connect to

virtually any data source from popular databases such as Google Sheets

and Excel, file storage services such as Dropbox, and enterprise data

services such as Amazon Web Services and Oracle.

B. Standalone Proprietary Visual Software Platforms

As shown in Figure 12, the standalone proprietary platform

Bubble has a wide variety of built-in UI elements that can be added to a

software application using the main application editor.

Figure 12: Bubble User Interface Editor

These elements can be added anywhere on a page by selecting, dragging,

and dropping them. Once a UI element is added, its properties can then be

viewed and modified by viewing and editing its corresponding property

editor, an example of which is shown in Figure 13.

253 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 13: Bubble UI Element Property Editor

Bubble also enables users to display quantitative data from the

application’s database or external sources in graphical form. This can be

accomplished using a built-in graph UI element, a third-party plugin, or

by embedding charts and other data visualization tools within an

application using widely-used HTML and iFrame formats.43 Bubble’s

built-in chart element, for example, enables the display of line, bar, radar,

pie, and doughnut charts.44 Social science researchers can also use

Bubble’s API plugin to interact with external data science and data

visualization platforms.45 This allows researchers to use Bubble to perform

statistical analyses and present visual data.

Bubble enables visual programming of workflows using its

Workflow builder. Figure 14 shows a very simple workflow example that

43 Introduction, BUBBLE DOCS, https://manual.bubble.io/#Data.Messages [https://perma.cc /MQ84-

5P6S] (last visited Mar. 22, 2022).
44 Id.
45 Adding API Connections, BUBBLE DOCS, https://manual.bubble.io/building-plugins/adding-api-

connetions [https://perma.cc/LM4T-GDQ6] (last visited Mar. 22, 2022).

2022] Metasoftware 254

programs software to navigate the application’s user to the application’s

Index page if a certain button is clicked.

Figure 14: Simple Workflow in Bubble

Workflows can also implement programming logic on external

software systems in order to integrate the data or functionality within an

application built with Bubble. The standard approach for web applications

to interact is using the RESTful API protocol.46 The Bubble API plugin

enables applications to connect to other applications. In a common REST-

based action, an application in Bubble will send data to an external

application service that will return data based upon the data that it receives

from Bubble. For example, the Google Programmable Search Engine API

enables an application built with Bubble to run a customized search on any

specific website from within the Bubble application.47 This is

accomplished by sending search terms to the Google Search Engine API

corresponding to the customized search.48 In response, the Google API

will send search results back to be displayed within the application created

with Bubble.

Bubble enables data-oriented functionality for software

application creators with a built-in database. In terms of database

conceptual hierarchy, Bubble organizes databases, columns in a database,

and rows in a database as types, fields, and things, respectively.49

Developers can use workflows to connect UI elements to database-

oriented workflows and schedule database actions when certain conditions

are met. Bubble enables developers to program database actions using a

visual expression builder that searches, displays, and edits database entries

46 For an overview of RESTful APIs, See Kenneth Lange, The Little Book on Rest Services, Kenneth

Lange (2016), https://www.kennethlange.com/books/The-Little-Book-on-REST-Services.pdf

[https://perma.cc /Y26L-CYXU].
47Programmable Search Engine, GOOGLE, https://programmablesearchengine.google.com/about/

[https://perma.cc /9PN5-NPDB] (last visited Mar. 18, 2022).
48 Using REST to Invoke the API, GOOGLE, https://developers.google.com/custom-
search/v1/using_rest [https://perma.cc /AWQ6-RZ2W] (last visited Mar. 18, 2022) (“Search query -

Use the q query parameter to specify your search expression.”).
49 Bubble Key Concepts: types, fields and things, BUBBLE GROUP,
https://bubblegroup.gitbooks.io/bubble-manual/content/working-with-data/key-concepts.html

[https://perma.cc /5XKV-SHE5] (last visited Mar. 18, 2022).

255 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

in numerous ways, such as sorting, combining, and formatting text.50

Bubble enables different databases to refer to each other by enabling the

field in one database to be single values or a list of values from the field

of another database.51 Complex expression for extracting and replacing

text in a database can also be used in Bubble with the formalized regular

expression (or “RegEx”) approach.52

C. Platform Independent Visual Software Platforms

Unlike the Big Tech and standalone metasoftware platforms

analyzed above, a variety of metasoftware platforms have emerged that

are built with fully open-source code, can be run on a variety of platforms,

or at least code that is exportable by users. As discussed above, open-

source and exportable code supports the metasoftware property of

platform independence. Accordingly, the platforms discussed in this

section rank the highest in terms of platform independence. However,

because open-source software development tends to be more difficult to

earn revenue due to its lack of proprietary value capture, open-source

software tends to lag behind proprietary platforms in terms of the power

of their enabling components.

One aspect of metasoftware platforms that have a significant

amount of platform independence is that they enable users to decide where

the functional software they create with the platform runs. The ability of

users to choose where to run software is known as self-hosting. For

example, as applied to the WordPress website builder:

[a] webmaster could choose to use either WordPress.com

("hosted"), which is a largely free service maintained by

the company Automattic, or alternatively download the

WordPress software from WordPress.org and install the

WordPress software manually on their own private web

server, whether that server is leased from a web hosting

provider or on a server (physical hardware) owned by the

webmaster (“self-hosted”).53

Metasoftware platforms will typically describe their self-hosting

capability with language such as “[y]ou are in control of all the source

code, have full access to it and can use any hosting provider or a cloud

platform for your websites.”54 Metasoftware enables users to run the

functional software they create on any platform and export the code

50 Introduction, BUBBLE DOCS, https://manual.bubble.io/#Data.Messages [https://perma.cc /MQ84-
5P6S] (last visited Mar. 18, 2022).
51 Connecting Types With Each Other, BUBBLE DOCS, https://manual.bubble.io/working-with-

data/connecting-types-with-each-other [https://perma.cc/P9CB-DL8E].
52 Operators & Comparisons, BUBBLE DOCS, https://manual.bubble.io/core-resources/data/operations-

and-comparisons#extract-with-regex [https://perma.cc /SQ36-PAUA] (last visited Mar. 18, 2022);

Regular expression, WIKIPEDIA, https://en.wikipedia.org/wiki/Regular_expression [https://perma.cc
/S83U-KHR6] (last visited Mar. 18, 2022).
53 About: Self-hosting (web services), DBPEDIA, https://dbpedia.org/page/Self-hosting_(web_services)

[https://perma.cc /Y4V8-LJSL] (last visited Mar. 18, 2022).
54 Unleash Creativity, Visual, Low Code Productivity Tools for Professionals, WAPPLER,

https://wappler.io/ [https://perma.cc /4TGD-CNPA] (last visited Mar. 18, 2022).

https://manual.bubble.io/working-with-data/connecting-types-with-each-other
https://manual.bubble.io/working-with-data/connecting-types-with-each-other

2022] Metasoftware 256

underlying any functional software that is created. Flutterfly describes

their functional-software export feature in terms of the options: “[v]iew

the generated code in your browser, copy and paste it to your editor,

download and run in your emulator, or connect it with GitHub in order to

sync with your repository!” Draftbit’s Full Source Code Download feature

enables users to “[e]xport [their] entire build as one clean, repo-ready

package.”55

The metasoftware platforms that enable users to create functional

software that is the most platform independent are those whose

metasoftware technology are completely open source. As noted above,

when the metasoftware platform itself is open source, it is generally easier

for the user to implement the code they export on alternative systems.

Consistent with open-source software practice, the code that underlies

metasoftware platforms is made freely available on the Internet using the

standardized code repository Github.

The open source metasoftware platform, Saltcorn, enables users

to build functional software applications such as blogs, dashboards, and

project management tools. Saltcorn considers its primary benefit to be

platform independence, which it describes in the following way:

There are many other application platforms with the same

aims as Saltcorn, but very few of them are open source.

For some people this won't matter, but the open source

model will protect you from vendor lock in – being tied

to one provider which may at any point raise its prices,

cease to exist, discontinue features that you rely on. . . . It

is a goal of Saltcorn that people who outgrow Saltcorn at

some point in the future should also not be locked into the

tool but be in a good place where they can take their

database and build a Rails or Node application against it.56

Consistent with my theory about metasoftware characteristic

tradeoffs, Saltcorn is relatively weak in the substantive functionality that

it enables and in its connectivity to external platforms. Saltcorn is

primarily focused on enabling database oriented functional software, as

opposed to software with strong front-end, graphical interfaces.57 It also

has no readily available integrations with external software systems, which

requires them to be built from scratch.58

55 Visual Building Done Right, DRAFTBIT, https://draftbit.com/features [https://perma.cc/PV7D-89DZ]
(lasted visited Mar. 16, 2022).
56 Frequently Asked Questions, SALTCORN,

https://wiki.saltcorn.com/view/ShowPage?title=Frequently%20asked%20questions
[https://perma.cc/A8KJ-ZJ7D] (lasted visited Mar. 16, 2022).
57 See Tom Nielsen, Build with No Compromises, No Code, in No Time, SALTCORN,

https://saltcorn.com [https://perma.cc/JW2R-VQJ6] (last visited Mar. 16, 2022) (stating that “Saltcorn
is a platform for building database web applications without writing a single line of code”).
58 See supra note 58.

https://draftbit.com/features

257 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Another project that takes an open-source approach to creating a

metasoftware platform is Plasmic.59 However, because it still requires so

much coding to build functional software, it is very weak on all three

metasoftware characteristics. As noted in its documentation,

Plasmic as a page builder is its simplest and most common

use case. Beyond pages, Plasmic can even be used to

create frontends for complex web applications (such as

Plasmic itself, which was built in Plasmic). This is

possible because—despite being easy to start with—

Plasmic gives you full visual control and works deeply

with code. . . . For anything with non-trivial interactivity,

all the logic/behavior—state bindings, event handlers,

etc.—are all done from your own code.60

D. Web3 and Decentralized Infrastructure

The most fundamental form of platform independence is the

ability of software to run in any hosting environment and to be from

immutable restrictions. For example, requiring users to share data with

the hosting providers or be subject to content rules. The moniker given for

this type of infrastructure is “Web3” -- so named for being the third major

stage of progression of the internet. Web3 is often conceptualized as

consisting of the following layers that serve a specific function:

● state layer: tamper-proof, universal data storage;61

● computation layer: means of carrying out computation

that requires compatibility with one or more blockchain

networks capability of carrying out the computation;62

● component layer: digital assets such as tokens and

identities;63

● protocol layer: sets of standardized rules for activities

such as token trading;64

● scalability/transfer layer: additional networks that are

required to improve the speed and functioning of the state

layer;65

● user control layer: provides the graphics for wallets and

similar applications for users to initiate transactions and

make other changes to the state layer;66

59 See generally The Visual Builder for Your Tech Stack, PLASMIC, https://plasmic.app

[https://perma.cc/BUB8-F2R7] (last visited Mar. 17, 2022); Welcome to Plasmic, PLASMIC,
https://docs.plasmic.app/learn [https://perma.cc/X72Y-J8T5] (last visited Mar. 17, 2022).
60 Id.
61 Tekisalp, supra note 35.
62 Id.
63 Id.
64 Id.
65 Id.
66 Id.

2022] Metasoftware 258

● application layer: hosts functional software applications

that run on a distributed network (often referred to as

distributed applications, or “dApps”).67

From the standpoint of the metasoftware characteristic of platform

independence, Web3 is an improvement over Web2 because Web3 is

decentralized, or at least substantially more so than Web2. There are many

aspects to decentralization; in this context, it generally means that no

person or entity has control over the data, protocols, and operations of

software that runs on a network. This includes the purpose for which the

software is used, and the content produced using the software. This is often

described as permissionless innovation, whereby anyone can build and run

software on the network so long as they have sufficient technical and

economic capacity. Authorization by the provider of a network is not

required as it acts somewhat like a public road or other utility. More

technically, according to Javid Zarrin et al., Web3 decentralization via

blockchain is achieved because

. . . each transaction through its peers in the network is

done only by two nodes at a time and does not need a

third-party validation. Decentralization allows the

Blockchain to be non-reliant on a central authority. This

enables nodes to essentially have equal voting rights

within the network, which is then utilized with the

consensus algorithm to dictate the Blockchain.68

With respect to metasoftware platform independence, Web3

offers the highest degree of platform independence for any piece of

functional software created on the platform. A decentralized software

infrastructure means that functional software has the greatest degree of

flexibility with respect to the nature and manner of how the software can

run.

IV. BUILDING BLOCKS FOR LEGAL TECHNOLOGY

A. LegalTech and Metasoftware Tradeoffs

Metasoftware enables the creation of functional software,

including legal technology software (“legaltech”). The various

components of metasoftware accordingly serve as building blocks for

legaltech.

Legaltech is software that contributes to the practice of law by

furthering client objectives. The goals of legaltech include enhancing the

delivery of legal services and furthering public interest goals and access to

67 Id.
68 Javad Zarrin, et al., Blockchain for Decentralization of Internet: Prospects, Trends, and Challenges,

CORNELL U. arXiv:2011.01096, Nov. 2, 2020, at 7,

https://arxiv.org/pdf/2011.01096.pdf#:~:text=Decentralization%20allows%20the%20Blockchain%20t
o,be%20validated%20by%20trusted%20miners [https://perma.cc/T3BU-X4RX] (last visited Mar. 24,

2022).

259 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

the legal system.69 Legaltech has many subcategories that mirror those of

legal practice areas and the application of particular technologies. Given

the commercial potential of algorithmic law, legaltech often seeks to

automate legal reasoning to make deterministic conclusions about the

application of law based upon user information and other facts.

Major general categories of legaltech include:

● legal research

● electronic discovery

● automated pleading, motion, and discovery document-

writing and analysis

● lawyer-client matching platforms

● law firm matter management

● litigation analytics

● contract management and drafting automation

● digitally-assisted and automated contract negotiations

● digitizing contracts and other documents into digital-

native, structured-data documents

● contract analysis and analytics

● corporate legal operations analytics and workflow

automation

● legal intake and analysis via expert systems

● online dispute resolution.

Legaltech applications utilize a wide variety of technologies that

are common to modern applications such as artificial intelligence and

automation.70 For example, legaltech developers create software to

analyze case briefs to make suggestions for improvement, compare

hundreds of thousands of contracts to produce quantitative risk

assessments, and predict the rulings of judges. Digitized documents, data

about documents, and legal services data can also be incorporated into an

enormous range of semi and fully automated digital workflows that

69 Marc Lauritsen & Quinten Steenhuis, Substantive Legal Software Quality: A Gathering Storm?,

INT’L CONF. OF A.I. AND L. (2019), https://dl.acm.org/doi/pdf/10.1145/3322640.3326706

[https://perma.cc/LCT3-QWD8] (last visited Mar. 24, 2022) (stating that “Automated legal services

may be the best hope for access to justice and legal wellness for billions of our fellow humans. AI &

Law activists are encouraged to find ways to bring their utensils to the feasts of knowledge
automation that lie ahead”).
70 Daniel Faggella, AI in Law and Legal Practice – A Comprehensive View of 35 Current

Applications, EMERJ.COM (Sept. 7, 2021), https://emerj.com/ai-sector-overviews/ai-in-law-legal-
practice-current-applications/ [https://perma.cc/ZH3A-EPZQ] (last visited Mar. 24, 2022); Lauri

Donahue, A Primer on Using Artificial Intelligence in the Legal Profession, JOLT DIGEST (Jan. 3,

2018), https://jolt.law.harvard.edu/digest/a-primer-on-using-artificial-intelligence-in-the-legal-
profession [https://perma.cc/MAW5-RBP6] (last visited Mar. 24, 2022); Bernhard Waltl & Roland

Vogl, Explainable Artificial Intelligence – the New Frontier in Legal Informatics, JUSLETTER IT 22

(2018), https://jusletter-it.weblaw.ch/services/login.html?targetPage=http://jusletter-
it.weblaw.ch/issues/2018/IRIS/explainable-artifici_fbce1ac1d0.html__ONCE&handle=http://jusletter-

it.weblaw.ch/issues/2018/IRIS/explainable-artifici_fbce1ac1d0.html__ONCE

[https://perma.cc/E5NZ-6FCP] (last visited Mar. 24, 2022) (identifying numerous different types of
AI reasoning approaches in law legal scholarship); IACCM-Capgemini Automation Report, HUBSPOT

(Apr. 12, 2019), https://s3.eu-central-

1.amazonaws.com/iaccmportal/resources/files/10162_iaccmcapgeminiautomationreport.pdf
[https://perma.cc/K39X-JVC5] (last visited Mar. 24, 2022) (providing an overview of contract

automation tools).

2022] Metasoftware 260

include client-related services and decision making. In terms of user

interface, legaltech apps may use traditional point and click, touch screens,

voice inputs, and interactive chat bots.

B. Metasoftware Tradeoffs

The tradeoffs for the different types of metasoftware platforms

identified in Table 1 in Section III above have important implications for

using metasoftware to build legaltech. This is because different types of

legaltech are dependent on different metasoftware characteristics, such as

enabling components or connectivity. The following subsections discuss

how metasoftware can lay the basis as building blocks for major categories

of legaltech and any tradeoffs or other challenges involved.

C. Legal Research

Computational capabilities have long been applied to researching

the relevant primary and secondary sources applicable to a given legal

issue. Traditionally, legal research has relied upon using proprietary

platforms that digitally organize, archive, and update legal research

materials such as case law, statutes, and regulations. More recently,

primary and secondary legal research materials have become more readily

available online, often as a free public resource.

Accordingly, from a metasoftware building blocks perspective,

the most important aspect for legal research is being able to create a user

interface that displays the results of legal research. What is also important

is the connectivity aspect of metasoftware that can connect to legal

research material that is available external to the metasoftware platform

through an API.

For example, the standalone proprietary metasoftware platform Bubble

could be used to create functional legal research software by connecting

to Harvard’s Caselaw Access Project, which provides 6.7 million unique

cases for free via API.71 A user would insert case law search terms using

an input user interface element. That search term would be sent to the

Caselaw Access Project’s database of cases and retrieve the relevant

search results. This overall workflow is depicted in Figure 15:

71 Caselaw Access Project, HARV. L. SCH., https://case.law/ [https://perma.cc/3EJ7-UT8P] (last

visited Mar. 24, 2022).

261 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 15: Using Bubble to Create Legal Research Software

When the Bubble app is connected to the Caselaw Access Project

and a search term is sent to the Project, the Bubble API connector will

show the exact same results as API’s results in JSON. Figure 16 shows

how Bubble’s API Connector draws in search results from the Caselaw

Access Project API.

Figure 16: Bubble API Connector Drawing in Caselaw Access Project

Data

Accordingly, metasoftware can be used to create functional legal

research software out of two building blocks: 1) an API connection to the

Caselaw Access Project, and 2) the user interface elements of a search term

input and a search results output list.

2022] Metasoftware 262

Figure 17: Functional Legal Research Software Created with

Metasoftware Platform

These two building blocks can serve as the basis for additional

functionality, such as enabling users to save and sort their search results,

adding additional legal resources to search, and applying search

algorithms to improve search results.

D. Matter Management

A foundational application of legaltech in practice is matter

management. A standard industry definition of matter management is:

Matter management is the process of gathering, tracking,

assigning and reporting on legal work including matter

name, type, legal service providers and in-house counsel

working on the case, budgets and invoices. A matter can be

a simple task requested of corporate counsel, or a complex

legal project. For example, legal research, contracts,

disputes and litigation, intellectual property or [mergers and

acquisitions] M&A. Matter management enables more

effective organization, collaboration and reporting of a legal

department’s work and associated costs.72

Other important functionalities of matter management include

being able to “open matters of various types, assign budgets and billing

72 What is Legal Matter Management?, BUSYLAMP, https://www.busylamp.com/what-is-legal-matter-

management/ [https://perma.cc/9QLX-2KUB] (last visited Mar. 24, 2022); see also What is Legal
Matter Management? And Why it Matters to Legal Ops, MIRATECH (Aug. 13, 2020),

https://mitratech.com/resource-hub/blog/legal-matter-management/ [https://perma.cc/L5YX-AVVM].

263 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

guidelines, assign timekeepers to matters and sub-tasks, and report on who

worked on what, for how long.” According to a 2015 Thomson Reuter

survey, users of matter management tools most commonly expect the

following functionality:

● Integration with Outlook: email, calendars, etc.

● Automate tasks whenever possible (e.g. produce standard

letters and legal forms)

● Schedule tasks

● Place tasks to be completed in fee earners electronic diaries

● Evaluate tasks when they are overdue

● Integration with time recording and billing functionality.73

Given the prevalence of Microsoft Outlook for in-house legal

departments and law firms, the optimal building blocks for legaltech

matter management are those that make up the Microsoft Power

Platform.74 At a high level, the Power Platform’s products can be used for

matter management in the following way:

● Word documents, PDF documents, copies of email, and

other files can be stored on OneDrive, organized in folders

and subfolders, and labeled and tracked as appropriate.

● Various sharing and permission options of files within

OneDrive such as within SharePoint or Teams.

● Organizing files, syncing calendars, obtaining approvals,

and producing matter management information by

applying Power Automate to Outlook emails or documents

in OneDrive, including Excel spreadsheets that hold matter

management relevant data.

● Applying Power BI for more sophisticated insights about

performance and optimal resource allocation.

● Using SharePoint to create and store metadata about

documents and matters for search and analytics.

● Integrating with external legal billing services.75

As an example of how the Microsoft Power Platform is used for

matter management, consider how OneDrive enables files and folders to

be marked however the user chooses, and this label can correspond to a

status under a legal matter management method of organization, such as

case or deal status. As shown in the following figure, unrelated documents

can be grouped together by something as simple as a “Saved for later”

73 Jeffery, Chris, Focus on Matter Management for Small Law Firms, THOMSON REUTERS,

https://www.thomsonreuters.com/content/dam/openweb/documents/pdf/legal/white-paper/matter-

management-in-law-firms-product.pdf [https://perma.cc/8B2X-9V7J] (last visited Mar. 24, 2022).
74 7 Indisputable Reasons to Use Office 365 for Matter Management, REPSTOR,

https://www.repstor.com/wp-content/uploads/2017/09/O365-for-Matter-Management-paper-Final-

Sept-17.pdf [https://perma.cc/BPG5-9WVF] (last visited Mar. 24, 2022) (noting that “one in five
corporate employees now has Office 365, making it the most widely used enterprise cloud service”).
75 See generally, supra note 75.

2022] Metasoftware 264

status to alert the user of ongoing tasks with respect to the incomplete

document.

Figure 18: OneDrive Organization

Another example of Power Platform’s use in matter management

is using Power Automate to automate the process of saving and organizing

email attachments in OneDrive. Further customizations to Power

Automate include saving emails in a particular folder when received from

a specific person and updating internal and external collaborators in a

Teams channel that a new email has arrived from that person.76 The

following figure shows a Power Automate workflow automation that

saves only emails from a person named Erin Robbins in a particular

OneDrive folder.77

76 See Reach, Catherine, Microsoft 365 Power Automate, NORTH CAROLINA BAR ASSOCIATION

CENTER FOR PRACTICE MANAGEMENT, EMAIL MANAGEMENT, MICROSOFT OFFICE, PRODUCTIVITY

(June 23, 2020), https://www.ncbar.org/2020/06/23/microsoft-365-power-automate/,
[https://perma.cc/7B7D-DFYG].
77 See id.

265 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 19: Power Automate Workflow

E. Contract Automation

Contract automation technology digitizes and automates aspects

of the creation, management, and analysis of legal agreements throughout

their lifecycle, from inception to termination of the relationship between

parties. According to an IACCM-Capgemini Report, contract automation

technology has 14 general capabilities:

● Contract drafting

● Contract approvals

● Contract query

● Contract discovery

● Obligation management

● Document repository

● Dispute management

● Performance management and calculations

● Contract change management

● Contract information extraction (machine learning)

● Collaboration with counterparties

● Requests for proposals

● Management reporting

2022] Metasoftware 266

● Contract portfolio analysis78

Components of metasoftware can be used as the building blocks for

functional contract automation software. Given the ubiquity of Microsoft

Word in drafting contracts and PDF format for official versions of

executed documents, the Microsoft Power Platform is the most appropriate

platform for constructing the building blocks of functional contract

automation software.

A foundational aspect of contract automation is drafting contracts

using pre-established and pre-approved templates instead of drafting from

scratch and seeking approval for each new agreement. Using the Microsoft

Power Platform to enable users to populate contract templates entails the

following general steps:

1. Create a template in Word by adding variable fields (called

“content controls”) within the document that will serve as

placeholders for text that is populated with data.

○ An example of a template for a form letter with fields

for Recipient Name, Recipient Address, and Case

Number is as follows:

Figure 20: Example Word Template

2. Trigger the creation of a new document from a template by

connecting the template to a Microsoft Power Automate

workflow that triggers the population of the template with

data from a spreadsheet.

○ An example of populating the foregoing template with

a manually triggered Power Automate workflow is

shown in the Figure below:

78 IACCM-Capgemini, supra note 75.

267 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Figure 21: Manually Triggering Template Data Population with

Power Automate

3. Define what action to take after the new document has been

created from the form, such as saving the new document to

a particular folder.79

F. Artificial Intelligence Applications

Given the importance and growing application of the machine

learning subdomain of artificial intelligence, this section will focus on AI

metasoftware and how the building blocks of AI for legaltech can be

constructed.

In order for metasoftware platforms to serve as a blank slate, they

must enable users to build state-of-the-art software functionality. This

generally occurs when metasoftware platforms integrate with more

specialized software providers and builders, such as those that use or

enable artificial intelligence, augmented and virtual reality, and gaming.

Blank-slate platforms should accordingly be conceptualized with respect

to these more specific functionalities such as platforms that enable users

to build a vast variety of artificial intelligence software.

The primary concepts in AI are defined as follows:

“Artificial Intelligence" is the term used to describe how

computers can perform tasks normally viewed as

79 See generally, Use Word templates to create standardized documents, MICROSOFT, (Feb 15, 2022),

https://docs.microsoft.com/en-us/power-platform/admin/using-word-templates-dynamics-365,

[https://perma.cc/48B9-B63X]; Bernier, Hugo, Generate Word documents from a template using
Power Automate, TAHOE NINJAS (March 13, 2020), https://tahoeninjas.blog/2020/03/13/generate-

word-documents-from-a-template-using-power-automate/ [https://perma.cc/7E52-USEA].

2022] Metasoftware 268

requiring human intelligence, such as recognizing speech

and objects, making decisions based on data, and

translating languages. AI mimics certain operations of the

human mind.

"Machine learning" is an application of AI in which

computers use algorithms (rules) embodied in software to

learn from data and adapt with experience.80

[A] neural network is [an algorithm used to make

decisions] comprised of four main components: inputs,

weights, a bias or threshold, and an output.81

Deep learning uses a “neural network that consists of

more than three layers.”82

A variety of AI metasoftware platforms that essentially serve as a

blank slate on which to build functional legaltech software already exist.

Several are summarized as follows:

● Akkio is an end-to-end AI platform that enables users to

integrate AI into workflows with a visual interface. Akkio

enables users to build and deploy machine learning neural

network models from data using visual “flows.” These

models are used to predict an outcome (or output) that the

user chooses . For example, 80% of the data may be used

to create a model, and the other 20% is used to validate the

model (i.e., check how well it works). Akkio also enables

users to create a simple mobile or web application using

the model that takes in new data and gives the user an

output (prediction) based on the model that was created.83

● Peltarion is a platform for building both supervised and

unsupervised machine learning models with a similar

approach to building models off data, evaluating the

efficacy of the model, and deploying the model in an

application. Peltarion enables a wide variety of AI

applications such as building image classifiers, text

classifiers, image and text similarity models, multi-label

classifications, image segmentation, and natural language

processing to classify text. The following figure shows

how “blocks” are used in Pelatarion, which “represent the

80 Donahue, Lauri, A Primer on Using Artificial Intelligence in the Legal Profession, JOLT DIGEST
(Jan 3, 2018), https://jolt.law.harvard.edu/digest/a-primer-on-using-artificial-intelligence-in-the-legal-

profession [https://perma.cc/JB3M-BU75].
81 Kavlakoglu, Eda, AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the
Difference?, IBM (May 27, 2020), https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-

learning-vs-neural-networks [https://perma.cc/6ZNE-SLKQ].
82 Id.
83 See Akkio, Getting Started With Akkio, YOUTUBE (Dec. 4, 2020),

https://www.youtube.com/watch?v=5V4o_gcIfx0 [perma.cc/24M8-UL6W].

269 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

basic components of a neural network and/or the actions

that can be carried out on them.”84

Figure 22: Representative Machine Learning Algorithm Components

and Actions

● Monkeylearn is another AI metasofware platform that

enables users to use AI to engage in (1) sentiment analysis,

(2) data cleaning, (3) sorting data that has not been

structured according to a predefined system, (4) machine

learning as referred to above, (5) natural language

processing, (6) topic analysis, (7) keyword extraction, (8)

text classification.85

These AI metasoftware platforms can be used to create the

building blocks of fully functional AI-powered solutions. According to a

comprehensive study of how AI is used in legaltech, its application falls

into six categories:

● Due diligence – Litigators perform due diligence with the

help of AI tools to uncover background information. . .

● Prediction technology – An AI software generates results

that forecast litigation outcome[s].

● Legal analytics – Lawyers can use data points from past

case law, win/loss rates and a judge’s history to be used for

trends and patterns.

● Document automation – Law firms use software templates

to create filled out documents based on data input.

● Intellectual property – AI tools guide lawyers in analyzing

large IP portfolios and drawing insights from the content.

84 Blocks, PELTARION, https://peltarion.com/knowledge-center/documentation/modeling-view/build-

an-ai-model/blocks [perma.cc/F7DK-GUV3] (last visited Mar. 10, 2022).
85 AI Guides, MONKEYLEARN, https://monkeylearn.com/guides/ [perma.cc/NM5D-2WKQ] (last

visited Mar. 10, 2022).

2022] Metasoftware 270

● Electronic billing – Lawyers’ billable hours are computed

automatically.86

Due diligence relies on large-scale, rapid AI-driven text

extraction, comparison, classification (e.g., high-risk language),

quantification (e.g., levels of enforceability), and summarization.87 Some

systems claim to be able to review over 10,000 documents in seconds.88

The following figure shows a screenshot from Kira’s due diligence

functionality that organizes definitions throughout agreements to enable

lawyers to compare them for consistency.89

Figure 23: AI-Driven Due Diligence

AI can also assist in both the transactional and litigation document

drafting by suggesting proper language or edits based upon data such as

what language is more likely to be accepted or challenged or what

language judges may find more persuasive.90 Functional software provider

Blackboiler describes its AI-driven software that suggests edits in the

following way:

BlackBoiler is the only patented, 100% AI-powered tool

that learns from your company’s playbook and your edits

to previously reviewed company documents to

instantaneously review and markup contracts in track

changes, just like an attorney.91

86 Faggella, Daniel, AI in Law and Legal Practice – A Comprehensive View of 35 Current

Applications, EMERJ, https://emerj.com/ai-sector-overviews/ai-in-law-legal-practice-current-

applications/ [perma.cc/8SX5-EP4U] (Sept. 7, 2021).
87 Id.
88 Morgan claims that their program, named COIN (short for Contract Intelligence), extracts 150

attributes from 12,000 commercial credit agreements and contracts in only a few seconds.
89 Due Diligence, KIRA, https://kirasystems.com/how-kira-works/due-diligence/ (last visited Mar. 10,

2022) [perma.cc/F49S-EAUY].
90 EMERJ, supra note 91.
91 Automated Contract Review, BLACKBOILER, https://www.blackboiler.com/automated-contract-

review/ (last visited Mar. 10, 2022).

https://www.blackboiler.com/automated-contract-review/
https://www.blackboiler.com/automated-contract-review/

271 Seattle J. Tech., Envtl. & Innovation Law [Vol 12:2

Accordingly, functional AI software can be trained to assist attorneys in

performing tasks such as editing contracts according to previously used

approaches and undertaking trademark and patent applications. In

electronic discovery, AI systems can review how previous documents

were scored by lawyers as being relevant to litigation and then perform its

own review and marking of documents.92

IV. CONCLUSION

Metasoftware is a fundamentally new category of software that

has no functionality per se except to enable users to build and customize

functional software. Metasoftware is a new category because, unlike

traditional functional software, it can enable users to create the widest

possible range of software functionality, integrate with external data and

systems, and run in any computing platform without being tied to any

particular environment.

There are three types of metasoftware platforms: large scale

cloud-providers, standalone proprietary platforms, and open-source

platforms. Each of these types of metasoftware platforms differs with

respect to the essential characteristics of metasoftware:

● Cloud provider-based platforms have high levels of

enabling properties and connectivity for their

complementary cloud-based products but are inherently

low with respect to platform independence due to their

business model.

● Standalone proprietary platforms have high levels of

enabling properties and connectivity for their plugin

ecosystem but are inherently low with respect to platform

independence due to their business model.

● Open-source platforms have low to medium levels of

enabling properties and connectivity but, by definition, the

highest levels of platform independence as their business

model does not rely on capturing users for cross-selling

products or platform usage fees.

Based on the relative strengths and weaknesses with respect to

building functional software for each type of metasofware platform, each

platform is generally best suited to building different types of legaltech.

Based on the discussion in this article, the type of metasoftware best suited

for building functional legaltech applications is as follows:

● Standalone proprietary metasoftware platforms are best for

legal research because of their high and accessible

connectivity to online primary and secondary legal

research data.

92 EMERJ, supra note 91.

2022] Metasoftware 272

● Microsoft’s cloud-based Power Platform is best suited for

legal matter management and contract automation

technology and relies heavily on other Microsoft products

such as Outlook and Word.

● Cloud provider and standalone metasoftware platforms are

best suited for integrating artificial intelligence

metasoftware due to the high connectivity of cloud

provider and standalone platforms.

	Metasoftware: Building Blocks for Legal Technology
	Recommended Citation

	Metasoftware: Building Blocks for Legal Technology
	Cover Page Footnote

	OLE_LINK1

